| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

Raw Science: Drying, Torrefaction, and Pyrolysis

Page history last edited by bk 14 years, 7 months ago

Initial Graph of Interactions Between Biochar, Plants, and Soil which should be extended with new research

Dot File used to create the graph

 

 

International Biochar Initiative: Bibliography

 

Biochar and Soil Relationships

Abbreviations:

  • BC – Black Carbon (black carbon is used to refer to charcoal and soot in geological literature)
  • CEC – Cation Exchange Capacity
  • AEC – Anion Exchange Capacity
  • OM – Organic Matter
  • | - given condition

BC Persistence ≠ Unchanged (the following were unfortunately not cited)

Incubation = ↑BC Oxidation

↑BC Oxidation = ↑BC CEC

↑Temperature = ↑OM Oxidation

↑Moisture =(?) ↑OM Oxidation

Fine Textured Soil =(?) ↓BC Oxidation (“aggregate protection”)

↑BC Oxidation = ↑ %O & %H relative to C

↑BC Oxidation = ↑ O-Containing Functional Groups

↑BC Environmental Exposure = ↑ BC Oxidation

Surface Oxidation > Interior Oxidation

↑BC Oxidation = ↓BC AEC (towards/to 0)

Adsorption of non-BC (eg Humic Acid) effect < Oxidation of BC

Temp Effect > Time Effect on Oxidation

 Low Temp Char  =(?) ↑Oxidation Rate

Small Biochar Particle Size = ↑Oxidation = Faster CO2 Conv. (Lehmann, 2007)

↑Biochar Pyrolysis Temp = ↑Biochar Potential CEC (pH 7) (Lehmann, 2007)

↑Biochar Pyrolysis Temp = ↑Fresh Biochar pH (Lehmann, 2007)

↑Biochar Pyrolysis Temp = ↑Fresh Biochar Surface Area (Lehmann, 2007)

↑Biochar Pyrolysis Temp = ↓Carbon Yield (Lehmann, 2007)

Optimum Temp Prob. 450-550°C (Lehmann, 2007)

Soil Base Saturation ∝ pH (Birkeland, 1999, p. 19)

↑Soil Biochar = ↑Soil Water Retention | Sandy Soil (Shuji Yoshizawa, Satoko Tanaka, Ohata, & Mineki, 2007)

↑Soil Biochar = ↑Soil Air Permeability | Clay Soil (Shuji Yoshizawa, Satoko Tanaka, Ohata, & Mineki, 2007)

↑Soil Biochar = ↑Soil Air Storage Ability | Clay Soil (Shuji Yoshizawa, Satoko Tanaka, Ohata, & Mineki, 2007)

↑↑Soil Biochar = ↑Moisture Holding Capacity | Tifton Loamy Sand (Gaskin et al., 2007)

Soil Phosphate Transport = few mm/yr | Most Soils (“Nutrient Cycling”)

↑ Soil Buffering Capacity = ↑ Resistance to pH Change (“Nutrient Cycling”)

↑ Soil CEC = ↑ Soil Buffering Capacity (“Nutrient Cycling”)

↓ Soil pH = ↑ Soil Trace Metal (e.g. Fe, Zn, Mn) Availability (“Nutrient Cycling”)

↑Soil pH = ↑ Soil Mg Availability (“Nutrient Cycling”)

↑Soil pH = ↑ Soil Mo Availability (“Nutrient Cycling”)

(6.3 < Soil pH < 6.8) = Ideal Soil pH for Nutrient Availability (“Nutrient Cycling”)

(6.3 < Soil pH < 6.8) = Ideal Soil pH for Active/Diverse Microbial Populations (“Nutrient Cycling”)

↑ Soil CEC = ↓Cation Leaching (e.g. K, Mg) (Ketterings, Reid, & Rao, 2007)

Slow Pyrolysis chars produced in presence of steam tend to be acidic (carboxylic acid groups activated) (Amonette, Harvesting Clean Energy 9, 2009)

Fast Pyrolysis chars produced in absence of steam tend to be very basic and make good liming agents (Amonette, Harvesting Clean Energy 9, 2009)

Biochar N from original biomass, however, may not be readily available (Amonette, Harvesting Clean Energy 9, 2009)

Biochar P is generally retained and available (Amonette, Harvesting Clean Energy 9, 2009)

 

 

References (Bear's 2008 Biochar Talk)

  • About Humic Substances. NEU Humic Acid Research Group. Retrieved from http://www.hagroup.neu.edu/aboutha.htm
  • Adriana, D., Zwieten, L. V., Doughty, W., & Joseph, S. (2007). Nutrient Retention Characteristics of Chars and the Agronomic Implications . In . Terrigal, New South Wales, Australia : International Agrichar Initiative.
  • Antal, M., & Gronli, M. (2003). The Art, Science, and Technology of Charcoal Production. Industrial & Engineering Chemistry Research, 42(8), 1619-1640. Retrieved from http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ie0207919.
  • Base Saturation Basics. Ontario Ministry of Agriculture, Food, and Rural Affairs. Retrieved from http://www.omafra.gov.on.ca/english/crop/field/news/croptalk/2004/ct_0604a11.htm.
  • Baskin, Y. (2006, April). Notes from the 2006 AAAS Annual Meeting. Bioscience, 56(4), 368. Retrieved from http://www.iaiconference.org/images/BlaskinBioScienceArticle.pdf.
  • Batjes, N. H. (2006). ISRIC-WISE  derived soil properties on a 5 by 5 arcminutes global grid (ver. 1.1), ISRIC - World Soil Information. Wageningen. Retrieved from http://www.isric.org.
  • Benites, V. D. M., Novotny, E. H., Teixeira, W. G., Madari, B. E., Pimenta, A. S., & Trompowsky, P. M. (2007). Use of Charcoal and Wood Carbonization By-Products in Agriculture: Learning With “Terra Preta De Indio” . In . Terrigal, New South Wales, Australia : International Agrichar Initiative.
  • Bingman, C. (1996, May 31). Humus, humic acid and natural chelating agents. Retrieved from http://www.thekrib.com/Chemistry/humic.html.
  • Birkeland, P. (1999). Soils and Geomorphology  (3rd ed., p. 448 p.). Oxford University Press.
  • Bush, M. B., & Silman, M. R. (2007). Amazonian exploitation revisited: ecological asymmetry and the policy pendulum. Frontiers in Ecology and the Environment, 5(9), 457-465. doi: 10.1890/070018 .
  • Chan, K. Y., van Zwieten, L., Meszaros, I., Downing, A., & Joseph, S. (2007). Assessing the Agronomic Values of Contrasting Char Materials on an Australian Hard Setting Soil . In . Terrigal, New South Wales, Australia : International Agrichar Initiative.
  • Cheng, C., Lehmann, J., & Engelhard, M. (2008). Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598–1610. doi: 10.1016/j.gca.2008.01.010.
  • Clancy, K. Cation Fertility: Understanding CEC and Base Saturation. Fusion Turf Nutrition.
  • Cohen-Ofri, I., Popovitz-Biro, S., & Weiner, S. Characterization of natural charcoal structure and degradation using high resolution TEM and Electron Energy Loss Spectroscopy (EELS). Retrieved from http://materials.technion.ac.il/ism/Docs/2006/Cohen-Ofri-Margulis-ORAL.pdf.
  • Cole, C. V., Paustian, K., Elliott, E. T., Metherell, A. K., Ojima, D. S., & Parton, W. J. (1993). Analysis of agroecosystem carbon pools. Water, Air, & Soil Pollution, 70(1), 357-371. doi: 10.1007/BF01105007.
  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173. doi: 10.1038/nature04514.
  • Demirbas, A. (2001). Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Conversion and Management, 42(10), 1229-1238. doi: 10.1016/S0196-8904(00)00110-2.
  • Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31(6), 426-432. doi: 10.1016/j.biombioe.2007.01.012.
  • Franklin, R. (1951). Crystallite Growth in Graphitizing and Non-Graphitizing Carbons. Articles. Retrieved July 31, 2008, from http://profiles.nlm.nih.gov/KR/B/B/F/Y/.
  • Gaskin, J. W., Speir, A., Morris, L. M., Ogden, L., Harris, K., Lee, D., et al. (2007). Potential for pyrolysis char to affect soil moisture and nutrient status of a loamy sand soil. In Proceedings of the 2007 Georgia Water Resources Conference. University of Georgia.
  • German, L. A. (2003). Historical contingencies in the coevolution of environment and livelihood: contributions to the debate on Amazonian Black Earth. Geoderma, 111(3-4), 307-331. Retrieved from http://www.soils.wisc.edu/soils/courses/875/14Exemplary%28A%29.pdf.
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal a review. Biology and Fertility of Soils, 35(4), 219-230. Retrieved from http://www.eprida.com/hydro/ecoss/background/Glaser%20et%20al%20(2002)%20BFS.pdf.
  • Haefele, S. M. (2007). Black soil, green rice. RiceToday, 6(2), 27. Retrieved from http://www.irri.org/publications/today/pdfs/6-2/26-27.pdf.
  • Harris, P. J. F. On Charcoal. . Retrieved from http://www.personal.rdg.ac.uk/~scsharip/Charcoal.htm.
  • Hawkins, B. (2007). Influence of Pyrolysis Conditions on Char Properties . In . Terrigal, New South Wales, Australia : International Agrichar Initiative.
  • Humic Substances Seminar V. (2001, March 23).NEU Humic Acid Research Group. Retrieved from http://www.hagroup.neu.edu/linksfrm.htm.
  • Illinois Native Plant Guide - Root Systems | Illinois NRCS. . Retrieved from http://www.il.nrcs.usda.gov/technical/plants/npg/NPG-rootsystems.html.
  • Inventory of U.S. greenhouse gas emissions and sinks: 1990-2004. (2006). US Environmental Protection Agency. Retrieved from http://yosemite.epa.gov/oar/globalwarming.nsf/UniqueKeyLookup/RAMR6MBLNN/$File/06Trends.pdf.
  • Ketterings, Q., Reid, S., & Rao, R. (2007). Cation Exchange Capacity (CEC). Cornell University Cooperative Extension. Retrieved from http://nmsp.css.cornell.edu/publications/factsheets/factsheet22.pdf.
  • Laird, D. A. (2008). The Charcoal Vision: A Win Win Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality. Agron J, 100(1), 178-181. Retrieved from http://agron.scijournals.org/cgi/content/abstract/agrojnl;100/1/178.
  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/FrontiersEcolEnv%205,%20381- 387,%202007%20Lehmann.pdf.
  • Lehmann, J., Cheng, C. H., Nyugen, B., Liang, B., & Smernik, R. (2007). Permanency and Long-Term Changes of Bio-Char in Soil . In . Terrigal, New South Wales, Australia : International Agrichar Initiative.
  • Lehmann, J., Gaunt, J., & Marco, R. (2006). Bio-char sequestration in terrestrial ecosystems – a review . Mitigation and Adaptation Strategies for Global Change, 11, 403–427. doi: 10.1007/s11027-005-9006-5 .
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., et al. (2006). Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci Soc Am J, 70(5), 1719-1730. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/SoilSciSocAmJ%2070,%201719-1730,%202006%20Liang.pdf.
  • Lima, H. N., Schaefer, C. E. R., Mello, J. W. V., Gilkes, R. J., & Ker, J. C. (2002). Pedogenesis and pre-Colombian land use of “Terra Preta Anthrosols” (“indian black earth”) of Western Amazonia. Geoderma , 110, 1-17.
  • Malhi, Baldocchi, & Jarvis. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22(6).
  • Mann, C. (2002). Agriculture: the real dirt on rainforest fertility. Science, 297(5583). Retrieved from http://www.sciencemag.org/cgi/content/summary/sci;297/5583/920.
  • NSSH Part 618 | NRCS Soils. .USDA Natural Resources Conservation Service. Retrieved from http://soils.usda.gov/technical/handbook/contents/part618.html#43.
  • Nutrient Cycling. Retrieved from http://southcenters.osu.edu/soil/n_cycle.htm.
  • O'Neill, B., Grossman, J. M., Tsai, S. M., Lehmann, J., & Theis, J. E. (2007). Analysis of Bacterial Communities in Amazonian Dark Earths through  Community-Level Molecular Analysis and Identifying Dominant Species in Soils from the Eastern and Central Amazon . In . Terrigal, New South Wales, Australia: International Agrichar Initiative.
  • Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitigation and Adaptation Strategies for Global Change, 11(2), 421―436. doi: 10.1007/s11027-005-9007-4.
  • Overend, R. P., & Milbrandt, A. Tackling Climate Change in the U.S. - Potential Carbon Emissions Reductions from Biomass by 2030. Preston, C. M., & Schmidt, M. W. I. (2006). Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, 3(4), 397-420. Retrieved from http://www.biogeosciences.net/3/397/2006/.
  • Ramsey, C. (1999, February 15). A description of activated charcoal for controlled release of soil active herbicides. Retrieved from http://cphst.aphis.usda.gov/nwsl/controlledreleaseherbicides/charcoalcontrolledrelease.pdf.
  • Rice, C. W. (2002, January). Geotimes - January 2002 - Carbon in Soil. Geotimes. Retrieved June 30, 2008, from http://www.agiweb.org/geotimes/jan02/feature_carbon.html.
  • SEM/EDX-Lab: Gallery-1 Miscellaneous. .Biogeology and Applied Paaeontology at the University of Tubingen. Retrieved from http://www.sem-edx-lab.uni-tuebingen.de/site/index.php?id=7.
  • Skjemstad, J. O., Reicosky, D. C., Wilts, A. R., & McGowan, J. A. (2002). Charcoal Carbon in U.S. Agricultural Soils . Soil Science Society of America Journal, 66, 1249-1255.
  • Steiner, C. (2006, November 26). Slash and Char as Alternative to Slash and Burn . Universitat Bayreuth. Retrieved from http://www.biochar.org/joomla/images/stories/SteinerPhDSummary.pdf.
  • Steiner, C., Teixeira, W., Lehmann, J., Nehls, T., de Macêdo, J., Blum, W., et al. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1), 275-290. doi: 10.1007/s11104-007-9193-9.
  • Thomas, M. G., & Schumann, D. R. (1993). Income Opportunities in Special Forest Products-Self-Help Suggestions for Rural Entrepreneurs. . U.S. Department of Agriculture. Retrieved from http://www.fpl.fs.fed.us/documnts/usda/agib666/agib666.htm.
  • Tillman, D., Jason, H., & Lehman, C. (2006). Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science, 314, 1598-1600. doi: 10.1126/science.1133306.
  • USDA/Agricultural Research Service. (2008, July 2). Glomalin Is Key To Locking Up Soil Carbon. ScienceDaily. Retrieved from http://www.sciencedaily.com/releases/2008/06/080629075404.htm.
  • Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil ― concepts and mechanisms. Plant Soil, 300, 9―20. doi:10.1007/s11104-007-9391-5.
  • Weber, J. Connection of humic substances with mineral fraction. . Retrieved from http://www.ar.wroc.pl/~weber/kombi2.htm.
  • Weber, J. Properties of humic substances. . Retrieved from http://www.ar.wroc.pl/~weber/kwasy2.htm.
  • Woolf, D. (2008, January). Biochar as a soil amendment: A review of the environmental implications. Retrieved from http://www.orgprints.org/13268/01/Biochar_as_a_soil_amendment_-_a_review.pdf.
  • Yoshizawa, S., Tanaka, S., & Omori, T. (2007). Preservation of Woods in Forest Acid Soil by Addition of Biomass Charcoal . In . Terrigal, New South Wales, Australia : International Agrichar Initiative.
  • Yoshizawa, S., Tanaka, S., Ohata, M., & Mineki, S. (2007, April 30). Proliferation effect of aerobic microorganisms during composting of rice bran by addition of biomass charcoal. Terrigal, New South Wales, Australia . Retrieved from http://www.biochar-international.org/images/Yoshizawa_-_Charcoal_Composting_of_Rice_Bran_Effect_on_Microorganisms.pdf. 

 

Comments (0)

You don't have permission to comment on this page.